skip to main content


Search for: All records

Creators/Authors contains: "Renne, Paul R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Refinements of the geological timescale driven by the increasing precision and accuracy of radiometric dating have revealed an apparent correlation between large igneous provinces (LIPs) and intervals of Phanerozoic faunal turnover that has been much discussed at a qualitative level. However, the extent to which such correlations are likely to occur by chance has yet to be quantitatively tested, and other kill mechanisms have been suggested for many mass extinctions. Here, we show that the degree of temporal correlation between continental LIPs and faunal turnover in the Phanerozoic is unlikely to occur by chance, suggesting a causal relationship linking extinctions and continental flood basalts. The relationship is stronger for LIPs with higher estimated eruptive rates and for stage boundaries with higher extinction magnitudes. This suggests LIP magma degassing as a primary kill mechanism for mass extinctions and other intervals of faunal turnover, which may be related to CO 2 ,   SO 2 , Cl, and F release. Our results suggest continental LIPs as a major, direct driver of extinctions throughout the Phanerozoic. 
    more » « less
  2. Abstract We investigate the shallow plumbing system of the Deccan Traps Large Igneous Province using rock and mineral data from Giant Plagioclase Basalt (GPB) lava flows from around the entire province, but with a focus on the Saurashtra Peninsula, the Malwa Plateau, and the base and top of the Western Ghats (WG) lava pile. GPB lavas in the WG typically occur at the transition between chemically distinct basalt formations. Most GPB samples are evolved basalts, with high Fe and Ti contents, and show major and trace elements and Sr-Nd-Pb isotopic compositions generally similar to those of previously studied Deccan basalts. Major element modeling suggests that high-Fe, evolved melts typical of GPB basalts may derive from less evolved Deccan basalts by low-pressure fractional crystallization in a generally dry magmatic plumbing system. The basalts are strongly porphyritic, with 6–25% of mm- to cm-sized plagioclase megacrysts, frequently occurring as crystal clots, plus relatively rare olivine and clinopyroxene. The plagioclase crystals are mostly labradoritic, but some show bytownitic cores (general range of anorthite mol%: 78–55). A common feature is a strong Fe enrichment at the plagioclase rims, indicating interaction with an Fe-rich melt similar to that represented by the matrix compositions (FeOt up to 16–17 wt%). Plagioclase minor and trace elements and Sr isotopic compositions analyzed by laser ablation inductively coupled plasma mass spectrometry show evidence of a hybrid and magma mixing origin. In particular, several plagioclase crystals show variable 87Sr/86Sri, which only partially overlaps with the 87Sr/86Sri of the surrounding matrix. Diffusion modeling suggests residence times of decades to centuries for most plagioclase megacrysts. Notably, some plagioclase crystal clots show textural evidence of deformation as recorded by electron back-scatter diffraction analyses and chemical maps, which suggest that the plagioclase megacrysts were deformed in a crystal-rich environment in the presence of melt. We interpret the plagioclase megacrysts as remnants of a crystal mush originally formed in the shallow plumbing system of the Deccan basalts. In this environment, plagioclase acquired a zoned composition due to the arrival of chemically distinct basaltic magmas. Prior to eruption, a rapidly rising but dense Fe-rich magma was capable of disrupting the shallow level crystal mush, remobilizing part of it and carrying a cargo of buoyant plagioclase megacrysts. Our findings suggest that basaltic magmas from the Deccan Traps, and possibly from LIPs in general, are produced within complex transcrustal magmatic plumbing systems with widespread crystal mushes developed in the shallow crust. 
    more » « less
  3. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less
  4. A 2 to 4 °C warming episode, known as the Latest Maastrichtian warming event (LMWE), preceded the Cretaceous–Paleogene boundary (KPB) mass extinction at 66.05 ± 0.08 Ma and has been linked with the onset of voluminous Deccan Traps volcanism. Here, we use direct measurements of melt-inclusion CO2concentrations and trace-element proxies for CO2to test the hypothesis that early Deccan magmatism triggered this warming interval. We report CO2concentrations from NanoSIMS and Raman spectroscopic analyses of melt-inclusion glass and vapor bubbles hosted in magnesian olivines from pre-KPB Deccan primitive basalts. Reconstructed melt-inclusion CO2concentrations range up to 0.23 to 1.2 wt% CO2for lavas from the Saurashtra Peninsula and the Thakurvadi Formation in the Western Ghats region. Trace-element proxies for CO2concentration (Ba and Nb) yield estimates of initial melt concentrations of 0.4 to 1.3 wt% CO2prior to degassing. Our data imply carbon saturation and degassing of Deccan magmas initiated at high pressures near the Moho or in the lower crust. Furthermore, we find that the earliest Deccan magmas were more CO2rich, which we hypothesize facilitated more efficient flushing and outgassing from intrusive magmas. Based on carbon cycle modeling and estimates of preserved lava volumes for pre-KPB lavas, we find that volcanic CO2outgassing alone remains insufficient to account for the magnitude of the observed latest Maastrichtian warming. However, accounting for intrusive outgassing can reconcile early carbon-rich Deccan Traps outgassing with observed changes in climate and atmospheric pCO2.

     
    more » « less
  5. Late Cretaceous records of environmental change suggest that Deccan Traps (DT) volcanism contributed to the Cretaceous-Paleogene boundary (KPB) ecosystem crisis. However, testing this hypothesis requires identification of the KPB in the DT. We constrain the location of the KPB with high-precision argon-40/argon-39 data to be coincident with changes in the magmatic plumbing system. We also found that the DT did not erupt in three discrete large pulses and that >90% of DT volume erupted in <1 million years, with ~75% emplaced post-KPB. Late Cretaceous records of climate change coincide temporally with the eruption of the smallest DT phases, suggesting that either the release of climate-modifying gases is not directly related to eruptive volume or DT volcanism was not the source of Late Cretaceous climate change. 
    more » « less
  6. Abstract

    We investigated a suite of metabasite blocks from serpentinite matrix and shale matrix mélanges of the California Coast Ranges. Our new data set consists of40Ar/39Ar dates of amphibole and phengite and U‐Pb dates of metamorphic zircon. Combined with published geochronology, including prograde Lu‐Hf garnet ages from the same blocks, we can reconstruct the timing and time scales of prograde and retrograde metamorphism of individual blocks. In particular we find that exhumation from amphibole‐eclogite facies conditions occurred as a single episode at 165–157 Ma, with an apparent southward younging trend. The rate and timing of exhumation were initially uniform (when comparing individual blocks) and fast (with cooling rates up to ~140°C/Ma). In the cooler and shallower blueschist facies, exhumation slowed and became less uniform among blocks. Considering the subduction zone system, the high‐grade exhumation temporally correlates with a magmatic arc pulse (Sierra Nevada) and the termination of forearc spreading (Coast Range Ophiolite). Our findings suggest that a geodynamic one‐time event led to exhumation of amphibole‐eclogite facies rocks. We propose that interaction of the Franciscan subduction zone with a spreading ridge led to extraction of the forearc mantle wedge from its position between forearc crust and subducting crust. The extraction led to fast and uniform exhumation of subducted rocks into the blueschist facies. We also show that the Franciscan subduction zone did not undergo significant cooling over time and that its initiation was not coeval with blueschist‐facies metamorphism of the Red Ant schist of the Sierra Nevada foothills.

     
    more » « less
  7. null (Ed.)
    Abstract The 40Ar/39Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing 40Ar/39Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of 40Ar/39Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting 40Ar/39Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of 40Ar/39Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity. 
    more » « less